Google scholar

Scopus

Identifier

Publication List

  1. D. Golze, L. Keller, P. Rinke, Accurate absolute and relative core-level binding energies from GW, J. of Phys. Chem. Lett., (2020), DOI:10.1021/acs.jpclett.9b03423
  2. A. Stuke, C. Kunkel, D. Golze, M. Todorovic, J. T. Margraf, K. Reuter P. Rinke, H. Oberhofer, Atomic structures and orbital energies of 61,489 crystal-forming organic molecules, Sci. Data 7 (2020), 58, DOI:10.1038/s41597-020-0385-y
  3. L. K. Scarbath-Evers, R. Hammer, D. Golze, M. Brehm, D. Sebastiani, W. Widdra, From Flat to Tilted: Gradual Interfaces in Organic Thin Film Growth, Nanoscale, 12 (2020), 3834, DOI:10.1039/C9NR06592J
  4. D. Golze, M. Dvorak, P. Rinke, The GW compendium: A practical guide to theoretical photoemission spectroscopy, Front. Chem., 7 (2019), 377,
    DOI:10.3389/fchem.2019.00377
  5. M. Dvorak, D. Golze, P. Rinke, Quantum embedding theory in the screened Coulomb interaction: Combining configuration interaction with GW/BSE, Phys. Rev. Materials, 3 (2019), 070801, DOI:10.1103/PhysRevMaterials.3.070801
  6. L. K. Scarbath-Evers, M. Todorovic, D. Golze, R. Hammer, W. Widdra, D. Sebastiani, P. Rinke, Gold diggers: Altered reconstruction of the gold surface by physisorbed aromatic oligomers, Phys. Rev. Materials, 3 (2019), 011601(R), DOI:10.1103/PhysRevMaterials.3.011601
  7. D. Golze, J. Wilhelm, M. van Setten, P. Rinke, Core level binding energies from GW: An efficient full-frequency approach within a localized basis, J. Chem. Theory Comput., 14 (2018), 4856, DOI:10.1021/acs.jctc.8b00458
  8. X. Chen, E. Makkonen, D. Golze, O. Lopez-Acevedo, Silver-Stabilized Guanine Duplex: Structural and Optical Properties, J. Phys. Chem. Lett., 9 (2018), 4789, DOI:10.1021/acs.jpclett.8b01908
  9. J. Wilhelm, D. Golze, L.Talirz and J. Hutter, C. A. Pignedoli, Toward GW Calculations on Thousands of Atoms, J. Phys. Chem. Lett. , 9 (2018), 306, DOI:10.1021/acs.jpclett.7b02740
  10. D. Golze, M. Iannuzzi and J. Hutter, Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations, J. Chem. Theory Comput., 13, 2202, DOI:10.1021/acs.jctc.7b00148
  11. D. Golze, N. Benedikter, M. Iannuzzi, J. Wilhelm and J. Hutter, Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals, J. Chem. Phys., 146 (2017), 034105, DOI:10.1063/1.4973510
  12. D. Golze, J. Hutter and M. Iannuzzi, Wetting of water on hexagonal boron nitride@Rh(111): A QM/MM model based on atomic charges derived for nano-structured substrates, Phys. Chem. Chem. Phys., 17 (2015), 14307-14316, DOI:10.1039/c4cp04638b
  13. E. I. Izgorodina, D. Golze, R. Maganti, V. Armel, M. Taige, T. J. S. Schubert and D. R. MacFarlane. Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids, Phys. Chem. Chem. Phys., 16 (2014), 7209, DOI:10.1039/C3CP53035C
  14. D. Golze, M. Iannuzzi, M.-T. Nguyen, D. Passerone and J. Hutter., Simulation of Adsorption Processes at Metallic Interfaces: An Image Charge Augmented QM/MM Approach, J. Chem. Theory Comput., 9 (2013), 5086, DOI:10.1021/ct400698y
  15. D. Golze, M. Icker and S. Berger. , Implementation of two-qubit and three-qubit quantum computers using liquid-state nuclear magnetic resonance, Concept. Magnetic Reson. A, 40 (2012), 25, DOI:10.1002/cmr.a.21222

PhD Thesis (2016)

Title: Efficient Methods to Reduce the Complexity of the Charge Density within Density Functional Theory for Large Systems

Description: The objective of my thesis has been the development of approximative DFT-based methods that are computationally less expensive. The first strategy has been to combine different levels of theory into hybrid schemes, keeping the higher accuracy of DFT only for selected parts of the investigated system. I developed an image charge augmented quantum mechanics/molecular mechanics (QM/MM) scheme for the simulation of adsorption processes at metallic interfaces. The second strategy has been the linearization of the representation of the charge density using a local resolution-of-the-identity (LRI) approach yielding significant speed-ups of an already very efficient implementation. To further increase the LRI performance, I derived a highly performant analytic integral scheme for contracted spherical Gaussian functions.
All methods have been implemented in the electronic structure package CP2K in a very efficient and massively parallel fashion.

Supervisor and Place: Prof. Jürg Hutter, Department of Chemistry, Universität Zürich

Read: https://www.zora.uzh.ch/id/eprint/116638/